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AIlIcr1Id-The buckling and postbucltling of a finite, heavy elastic sheet is studied. The sheet
originally lies on a horizontal plane, one end clamped and one end subjected to a compressive load.
Depending on the magnitude of the normalized force F. the lying sheet may be regarded "long"
or "short". Stability analyses in both cases show the buckling behavior is quite different from the
Euler column theory. A modified critical buckling load is defined. The analytic results compare
well with exact numerical integration.

INTRODUCTION

The study of the buckling of a column or an elastic sheet due to a compressive end load
is of basic importance in structural engineering. Euler[l] first found the critical buckling
load of a weighless column. The standing heavy column subjected to an end load was
investigated by GrishcofT[2], and Wang and Drachman[3]. In this paper we shall study the
buckling of a heavy column or sheet which lies on a rigid horizontal surface. Problems
of this type, having one-sided constraints, are much more difficult than those studied
previously using simple stability analysis. As a result, we must revise the usual concept of
infinitesimal stability advocated in[2].

FORMULATION

Figure l(a) shows an elastic sheet oflength L and weight per length p, one end clamped,
lying on a horizontal surface. The other end is subjected to a horizontal compressive force
F'. For sufficiently large force F', the elastic sheet will buckle as in Fig. l(b). Let the origin
of a Cartesian axes x', y' be at the free end. Let s' be the arc length from the origin, 9
be the local angle of inclination and l' be the lifted length. In Fig. J(b), only part of the
sheet (0 S s' S /') is lifted. The rest of the sheet (l' S s' S L) remain flat due to the
one-sided constraint of the horizontal surface. If F' is further increased, the entire sheet,
except the point at s' = L, will separate from the flat surface.

Balancing the local moment m on an elemental length ds', we find

dm = ps' cos (J ds' - F' sin (J ds'.

If the sheet is thin enough, the heavy elastica equation of[4] is obtained:

d2(J
EI ds,2 =ps' cos 6 - F' sin 6.

We then nonnalize all lengths by L and drop primes

d2(J
ds2 = Bs cos (J - F sin 6.

(J)

(2)

(3)

Here B == pL3/EI is a dimensionless parameter representing the relative importance of
weight to flexural rigidity EI. The dimensionless parameter F == F'L2/EI represents the
relative importance of compressive load to flexural rigidity. The shape of the sheet is
obtained from

dx (J dy . 6
ds=coS 'ds=Sln .
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Fig, I. The lying heavy sheet.

(b)

We shall regard a sheet as being long if, in a buckled configuration, a segment of the sheet
remains flat against the supporting surface, i.e. if /' < L. A short sheet is one which is
completely separated from its horizontal support, except at the attached end, i.e. when
/' =L. For the long sheet,

~~ (0) =0, x(O) =y(O) =0

dO
9(/) = ds (I) = O.

For the short sheet eqn (6) is replaced by

0(1) =O.

(5)

(6)

(7)

STABILITY OF THE LONG LYING SHEET

Let us consider the case when both 0 and B are small. Equation (3) linearized, becomes

(8)

Notice that eqn (8) applies only to the lifted section 0 S s SiS I. Since the trivial solution
9 =0 is not a solution to eqn (8), the problem is somewhat different from the usual elastic
stability problems. The general solution is

0= C1 sin JF(s - I) + C2 cos .,/£(s - I) + Bs/F.

The boundary condition eqn (6) give

0= - FftSinJF(S -/)-~ cosJF(s -/)+ Bs/F.

If B ~ 0, then eqns (5, 10) give the length I:

cos JFI + JFI sin JFI = I.

The smallest root to eqn (II) is

JFI = 2.3311223.

(9)

(10)

(11)

(12)

In order to buckle infinitesimally, I must start from zero. Thus, it takes infinite force to
buckle a horizontal elastic sheet which has nonzero weight! Also, F decreases as the lifted
length I increases. This means that for a fixed sufficiently large constant E, there is no
infinitesimally stable buckled equilibrium configuration as exists for an Euler column. If
the sheet starts to buckle due to imperfection or disturbance, it will continue to collapse
until flexural rigidity becomes dominant (the short (lying) sheet).
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The buckled configuration can be obtained by eqn (4). Retaining the leading tenns we
have

dx ::::: I _ (J2 dy::::: 0
ds 2' ds .

Using eqn (10), we obtain

B2 {(FP- I)
x =s - -2 JF [sin 2jF(.~ - I) + sin 2jF/]

4FJ F

-2~3 [cos 2jF(s - I) - cos 2ft/] + ;3 s cos J'F(s -I)

--d!-rrs sin ft(s _ I) __2_
F\.;F F3ft

x [sin ft(s - I) + sin ft/] - ~[COs ft(s - I)

S3 (1 +FP) } 4
-cosJ'F/] + 3F2 + 2F3 S + O(B )

[
1 JF I. JF S2 1 ]Y =B - cos F(s -I) - -- sm F(s - I) +- - - +0(B3

).
F2 FJ'F 2F F2

The horizontal shortening is

B2 {(FP-I) I
d =I - x(/) =2' 4F3J'F sin 2J'FI + 2F3cos 2ftl

2. 21 JF 5P}---sm !£I+-cos FI+-F3J'F .,;c F3 6F2

B2
=2.3642739 ri: .

F3.,;F

The maximum vertical displacement is

BP B
b = y(l) = 2F = 2.7170656 F2'

(13)

(14)

(IS)

(16)

(17)

Although the long lying sheet is unstable for fixed compressive force F, it is stable for given
shortening d. The reaction force can be found from eqns (12) and (16).

The long lying sheet is defined for I ;S; I. For small (J, this criterium can be written as

F ~ (2.3311223)2 = 5.434131.

Otherwise the elastica is called a short lying sheet.

(18)

STABILITY OF THE SHORT LYING SHEET

In this case the weight is unimportant. As first approximation, the sheet behaves like
an Euler column. We assume small (J and even smaller parameter B. Set

(19)

(20)

(21)
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Equation (3) becomes
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(22)

(23)

The boundary conditions, eqns (5) and (7), give

~~o (0) =0, 00(1) =0

:'1 (0) =0, 0\(1) =o.

The zeroth order solution is

ns nl

00 =C cos 2' FO="4'

(24)

(25)

(26)

Here C is an arbitrary amplitude and Fo is the Euler buckling load. The effect of weight
enters in the first order, eqn (23)

The solution is

ns 8. ns 4s C3 3ns (nC 3 FIC) . 1tSO,=C,cos---sm-+---cos-+ --- ssm-.
2 n 3 2 nl 192 2 32 1t 2

(27)

(28)

C j is again an arbitrary constant and can be absorbed into C without loss of generality.
Since Odl) = 0, we find

For an extremum of F., we set ~~ = 0 and obtain

4( 2)1/3
C =; 1-;

Thus the critical buckling force, occurring at finite amplitude C, is

(29)

(30)

(31)

(32)
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The buckled configuration can be obtained from eqns (4) and the expansion

Y = £Yo + ... (34)

The solution is

Xo =s, Yo =2~ sin x;, XI = _~2 (s +~ sin xs)'

Thus the horizontal displacement is

The maximum vertical displacement is

2C
b =y(1)=-B I

/3+O(B).
x

The moment at s = I is

dO (I) = _ Cn BI/3 +(!_C
3
n)B + 0(BS/3).

ds 2 x3 128

The amplitude C is related to F by

(35)

(36)

(37)

(38)

(39)

NUMERICAL INTEGRATION

For large deflections the nonlinear governing equations must be integrated numerically.
We first transform eqns (3)-(7), which represent a two point boundary value problem, into
an initial value problem.

For the long lying sheet, we set

eqns (3) and (4) become

d2(/
dr 2 = r cos (/ - H sin (/

du dv. II

dr =cos fJ, dr =SIO 17

(40)

(41)

(42)

where H == FB-2/3. For given H, we guess fJ(O) and integrate eqns (41) and (42) with the
initial conditions

de
dr(O) =0, u(O) =0, v(O) =O. (43)

The integration is terminated when dfJ Idr again becomes zero, say, at r = r·. A solution
is obtained if e is also zero there. If not, fJ(O} is adjusted, using Newton's method. The
integration is performed on a Textronix computer using the fifth order Runge-Kutta
Fehlberg method with a step size of 0.05.
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Then
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F = HB 2/3, b = [r* - u(r*)]B -1 /3, b = v(r*)B -1/3. (44)

These results are valid for I < I, or B > (r *)3.
For the short lying sheet, we also use eqns (41)-(43), except that we pick any 8(0) and

integrate until 0 reaches zero, say at r = r. Then

(45)

(46)

RESULTS AND DISCUSSION

Figure 2 shows the vertical edge displacement b as a function of compressive load
F for various constant B. Accurate data for the case B =0 (weighless sheet) were from [5].
We see that if gravity is absent, the critical buckling load is the Euler load 1[2/4, and the
bifurcation is of the usual pitchfork type. For F greater than the critical load, the straight

b

0.5
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oL--L~====~~::::::::===

2 3 4 5
F

Fig. 2. Vertical edge displacement b as a function of horizontal edge load F. Dotted line separates the long lying
sheet from the short lying sheet. Dashed lines are from eqns (37) and (39).
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Fig. 3. Critical buckling load as function of B. Dashed line is from eqn (32).
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sheet (trivial solution) is unstable to infinitesimal disturbances and thus can never be
realized.

The situation is quite different if B =F O. Take for example, the case B = 1. The
nontrivial equilibrium solution shown on Fig. 2 is the curve PQRS, which does not
intersect the b =0 axis. The segment QP to the right of the dotted line, represents the long
lying sheet. The segment QRS, representing the short lying sheet, approaches the B =0
curve, reflecting the increasing relative effect of flexural rigidity. Our approximate results
for small B, eqn (17) for the long lying sheet and eqns (37) and (39) for the short lying
sheet, compare well with the exact numerical results.

Now for given finite F, the heavy sheet is stable to infinitesimal disturbances but
unstable to finite disturbances due to the negative slope of the segment PQR. For example,
if F =5 a disturbance of b > 0.1 is needed to buckle the sheet which collapses and
eventually settle at a state on the stable segment RS(F = 5, b = 0.795). Let us redefine the
critical load to be the load below which the sheet will not buckle under any disturbance,
finite or infinitesimal. This load is at point R, Fc, =3.2.

The redefined critical load for the heavy lying sheet is plotted in Fig. 3. The critical
load rises sharply from the Euler load 7C

2/4 and increases as B is increased. We see that

4

3
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Fig. 4. Moment at the support versus F. Dashed lines are from eqns (38) and (39).

Fig. S. The horizontal edge displacement versus F. Dashed lines are from eqns (36) and (39).
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our approximate solution for small B, given by eqn (32) (dashed curve on Fig. 3), is within
3% error even for larger B values.

Figure 4 shows the moment at the support versus the end load F for various constant
values of B. This moment is zero for the long lying sheet, where F > 5.434. Figure 5 shows
the horizontal edge displacement ~. In general, our analytic approximations are useful for
small B and small ~, 0'(1), or b.
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